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TECHNICAL MEMORANDUM

TEE BOUNDARY LAYERS IN

u?56

FLU3DS

WITH lXTTLE FRICTION*

By H. Bh3ius

INTRODUCTION

1. The vortices formi~q in flowin~ water behind solid bodies are
not represented correctQ by the solution of the potential theory nor
by Helmholtzts jets. Potential theory is unable to satisfy the condi–
tion that the water adheres at the wetted bodies, and its solutions of
the fundamental hydrodynamic equations are at variance with the obser-
vation that the flow separates frcm the body at a certain point and

~ sends forth a highly turbtient boundary layer into the free flow.
‘ Hehnholtz~s theory attempts to imitate the latter effect in such a way

k,. that it joins two potential flows, jet and still water, nonanalytical
6’ alonq a stream curve. The admissibility of this methcd is based on

the fact that, at zero pressure, which is to prevail at the cited
stream curve, the connection of the fluid, and with it the effect of
adjacent parts on each other, is canceled. In reality, however, the
pressure at these boundaries is definitely not zero, lut can even be
varied arbitrarily. Besides, Helmholtz~s theory with its potential
flows does not satisfy the condition of adherence nor explain the
origin of the vortices, for in all of these yroblems, the friction
must be taken into account on principle, according to the vortex
theorem.

When a cylinder is dipped into flowing water, for e-pie, the
flow conesponds, qualitatively, to the known potential, but as the
water adheres to the cylinder, a boundary layer forms on the cylinder
wall in which the velocity rises from zero at the wall to the value
given by the potential flow. In this boundary layer, the friction
plays an essential part because of the marked velocity difference;
on it also depends the etient of the velocity~ecreasing wall.effect,
which must be conveyed by shearing forces into the fluid, that is, the

*“Grenzschichten in Fliissigkeitenmit kleiner Reibung.”
Zeitschrift fiirMthematik und Physik, Band 56, Heft 1, 1908, pp. 1 – 37.
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thickening of the boundary layer.
certain place, and that the water,

I!7ACATM u76
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That the outer flow separates at a
set in violent rotation at the f‘..

boundary; leads into the open, must be explainable frcm the processes
in the boundary layer.

The exact treatment of this question was undertaken originally
by Prandtl (Verhandlungendes intern. Math. Kongress, 1904). This
explanation of the separation is repeated %e@w. Since the integration
of the bydrodxc eqqations with friction is a too difficult
problem, he assumed.the internal friction as leing smalJ, but retained
the condition of adherence at the boundary surface. In the present
report, several problems, based upon the stiplified hydrodynamic
equations resulting from Prandtlts article, are “workedout. They
refer t’othe formation of boundary layers on solid bodies and the
origin of separation of jets frcm these boundary layers suggested by
Prandtl. The writer wishes to thank Prof. L. Prandtl for the sugges-
tion of this article.

2. The constant of the internal friction is assumed small as in
Prandtlts report. The boundary layers then become correspcmdingly
thin; the fluid maintains its normal (potential) velocity up to
near the boundary surface. Nevertheless, the decrease in velocity

“ to value zero, and, as the calculation will show, the separation
in this bounda~ layer must, naturally, continue, and so the potential

. flow is not completely regained, even at arbitrarily little friction;
rather the separation and,the transfo~tion of the flow effected
through it behind the baymust prevail even at arbitrarily small
friction.

Y

Figure 1

The procedure is limited to two4M_mensional

.-

flow and coordinates
parallel and at right angles to the boundary (arc length and normal
distance). In spite of its cui’vature,the type of the basic equaticms
in the narrow space of the boundary does not differ perceptibly frcm
that for rectangular coordinates. With e as order of magnitude of .
the boundary-~yer thickness
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a&.~&*&
ay ~’ &2 E2

as ths velocity u over this distance is to increase frcm zero

~~~n~finormal values; u, —S have normal value; frcm the
at ax’ &#

to

equation of continuity follows then
h— - 1, and ly integratti, v . 6.
ay s

The terms in the fundamental equations obtain then the following
order of magnitudel

( )~ &+v$
‘Z+uax ‘-%+’(s2+s$

&+&=()
ax ay

11

The friction gains influence when it Is put at k - 62; this
gives the relationship between boundary-layer thiclm.essand smalhess
of friction constant. In the first equaticm, the term #u/bx2

cancek out; in the second equation, only h/by . e or, when
a3J.owingfor the coordinate curvature, * 1 remainsl. In both cases,

lAllo~nce for the ~~at~e of the coord~tes prCdUCOS, L3S i13

apparent when reforming the differential quotients, only in the second
equaticm a not-to+ e+eglected term pu2/r if r is the radius of
curvature. This term is of the order of magnitude, unity.



4

the effect of the pressure on y is to be disregarded
narrow space of the boundary layer, the integration of
at the most, produce pressure differences of the order

I’?ACATM W6

●

since, in the
*/& can,
of magnitude

e2 or 6, or, in other words, pressure and pressure difference
?@/bx are independent of y, hence, are “tipressed” by the outer
flow on the boundary layer. The velocity of the outer flow neti to
the boundary layer is denoted hy Ii and is to be regarded solely
as function of x because the really existing dependence on y, when
compared with the substantial variations in the boundary layer itself,

can be ignored in the sense of the foregoing gnissions; v is accord-—
ingly - e = ~, hence beccmes zero with k. The remaining fundamental
equations for the boundary layers are then:

*

(auau += ,(~++)+k=%+ux+vay

&+&=o
ax ?)y

Boundary conditions are

for Y=o: u= o v = o

for Y=~: U.n

These equations establish, to a certain extent, a basis for a
special mechanics of boundary layers, since the outer flow enters only
in “impressed” manner.

3. The qualitative explanatim for the separation of flow
according to Prandtl is as follows: the pressure difference, and
with it the acceleration, is, apart from the friction term, constant
throughout the boundary layer, but the velocity near the till is
lower. As a result, the velocity here drops sooner below the value

B.
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zero for pressure rise than outside, thus giving rise to return flow
and jet formation, as indicated by the velocity profiles in the figure

*
below.

Figure 2

The region of separation itself is therefore characterized by
*

ho—= for y=O
● ay

,
This explanation does not work like the Helmholtz jet theory with
an ad hoc assumption, but only with the concepts forming the basis
of the present hydraQmamic equations. The stream line, which bounds
the separated part of the flow, departs at a certain angle frcm the
area of separation since the stream function V develo&3

around the separation ~oint [x] in the following manner:

v = c# + C2(X - [+ )#
.

As a less
consequence of
is pushed away

important effect, it is to be foreseen that, as a
the stagnation of water effected by adhesicm, the flow
frcm the body. Through this and the reformed flow aft

of the body, the flow upstream from ~he body is, of course, affected
also, so that the assumption of potential flow is insufficient for
quantitative accuracy of results end must be replaced by exper~tal
recording of the pressure distrilnztion.

●
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I.

The flow
the origin of

BOUNDARY L41ER

PIJW’EIMMERSED

NACA TM 1.v6

FOR THE STEADY MOTION ON A FLAT

PARALLEL TO THE STREAM LINES

proceeds parallel to the x-axis. The plate starts in
the coordinates and lies on the positive x-axis.

In this very elementary case, there is no pressure,difference;
hence, no separation is expected. However, the calculation i~
canied out to illustrate the mode of calculation to be used later.
The fundamental equaticms read:

—
,-

.

..—

—

&+&=(l
ax h

The equation of continuity is integrated by Introducing the stream
function ~:

U.w ,=_a .
by s

Boundary conditions are:

for y = O: U=o, v = o

for y = ~: u = ti,+constant

1. According to the principle of mechanical sfilitude, the
equations can le stiplified when a similitude transfo-tion converting”

—

differential equations and boundary conditions are known: multi-
plying x, y, u, v, + by the factors ~, yo, Uo, Vo, and $0 results

in —

Puo k ‘$0
—=2 vo.--# ‘to=
Xo

Uoyo; Uo = ti

—

---

—

as conditions that the problam and its solution are transformed, and
that, through the transformation, p, k, ii= 1 are created. The four b

*

.
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equaticms still leave a degree of

* factors Xos Yo> U(-JS7., and *O.

the factors assumed hy u, v, and

7

freedcm in the choice of the
The last three equations define

first etates that the-desired solution of i%e
itself, provided only that

@<=l

k X.

or in other words, with consideration of
and ~ assme, the condttiom can depend

piiyz——
kx

the transformation; the
problem transforms in

the factors which u, v,
only on

By this argument, the nuniberof hiependent variables is reduced.
Next

are introduced;~ is then sole function of ~ and

Insertion in the differential equaticm gives

Boundary conditions:

for = O:‘5 ~’=o ~=o fra.nu=O; v=o;

for ~ =Cr3: [’=2 from u = ii-
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2. The integration of these and subsequent equations is effected
by expansicm in series: expansion in powers.for ~ = O, asymptotic
approximations for ~ = CO. The boundary conditicms at both points
being given, one and two integration constants, respectively, occur
in the expansions. They are defined hy the fact that both expansions
must agree, at an arbitrary point.in the functim value ~, to the
first and seccmd differential quotient. The agreement of-all differen-
tfal quotients is then assured by the differential equation.

3. Solution of the above equationby expansicm in powers

~r’ = 4“

for ~ = O with the bound.aryconditions at this point

●

c.

-.
—

-T

-

—

is effected by

.
5 =

which is so chosen that
whole positive numbers,

~(-~)ncn@+l $n+2
n=o (Sn + 2)!

the coefficients cn to be defined are
which simplifies calculation. The

factor ~n+l brings out the nature of entry of the integraticm
constant; co, which otherwise would occur as such, can then be
put as co = 1. The recursion formula for cn reads

The first of the thus ccmrputedcoefficients are:

Co=l Cl=l C2 =11
C3 = 375 C4 = 27,897

C5
= 3,817,137 2 C6 =865,874,=5 C7 =298,013,289,793

On account of the convergence, the dencxninator.(Sn + 2)! was used in
the previous equations; {t and <“ are easily formed.

2The coefficients C6 and C7 in the original thesis are

incorrect. This error has no effect until the fourth decimal.

0

—

.“



NACA TM 1256 1

.

4. T~re is an additive integration constant for ~ in the
asymptotic approximation of ~ because .

3

for ~ =rn: C’=2

hence,

g=2g+conEt. =2q

so that ~ appears as new coordinate shifted toward ~.

To ccmpute a first correction

which gives

z~~i’ =

h

with the squares of the corrections

*

Kls Put

+ K1

-Kim

disregarded, hence by integration:

9

The general procedwe for cczuputingthe other tezms is such
that further minor corrections <n are added and its squares dis-

regarded. The result is a set of linear differential equations for Cn,

the left, homogeneous side always the same; at the right, the errbr
appears as “impressed force” which the sum of the preceding approxima–
tions, inserted in the differential equations, leaves.

5. The object is reached much quicker by the following argument:
The differential equation for cl

arises frcm the original equation

c?’ = -t”
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when the roughest approximation ~ = 27 is inserted at the left for ~.
Obviously, ~ has the least effect at this point, and the clifferential k.
equation is then integrate as if ~ were kmwn at tlds point.

g = !“’rd’eye”
The three inte~t ion constants are contained in the arbitrary low

limit s. Putting g-=

putting ( = 2?l+ {1

or with consideration

(=2+

= 27

27 at the right gives ~1 at the left, but-

at the right gives —-

to the boundary conditions

Hence, the second as~ptotic approximation

f

7
~a =-72 %

m

By partial integration

c’”

t2=-

72 4+—ne
4

4

0

—
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6. A general statement
According to the fomul.a

A

IL

,.
about such integrations reads as folJ.ows:

#-1e~2 +=~7e-V2@drI
2CQ

to be gained ly partial integratim, each integral of this form can be

2

/

v
reduced to the functions e—~ and e-q2dq mzltiplied by powers

m
of q. After several such integrals are obtained, the innermost is ~

ilca
integral sign.

necessary, in the indicated manner. The integral e–~’

IUUltiplied by powers, appears then below the penultimate

The former gives no new difficulty; the latter can be

If, as above, the integral can
must be distinguished:

multiplied by powers of ~. The

12 2
+ ~q e~2 + L-v

6
and so forth.

be qwdratic in e-72, four types

first and
new. Partial integration”providesfor the

fourth types give nothing
second the formula
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or

.

and
—

—

and so forth.

Likewise for the third t~e 9

introduced by these formuahs,Since no new types for integrals are

the indicated tabbs of formulas govern all integrals in which eflz
occurs no more than twice. Any nuniberof successive integrations
over such functions are possible; the powers of v involved are
unrestricted. The formulas for, ~2 in section 5 were obtained by
this method. These integrations wild %e met again later, With the
type of integration results thus known, the calculations can be made
by utilizing a formula with indetezzuinantcoefficients.

7. With this differential equation, it is possible also to define
the error that afflicts the present solution as a result of the effected

*

.
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cmissicms. It is easily verified.that

remain below the true value of ~. An
by employing the previousw given (see
modified

upper limit can also be found
Section 5) form, somewhat

Pn Pll

u= v-

of ccmyuting a finer f%au a rougher a~proximation: a rather arbitrarily
chosen upper limit, such as the first term of the scuniconvbrgent
expansion of cl, for instance, is entered for ~ – 27, thus

4 f

and an asymptoticalJy ftier upper MJnit
frcm this assumption. It is inkured so
below the assumed one. The calculation
fOrmula)

for K“, ~:, ( is cczquted
long as the latter remains
gives (according to the general

9

.
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Figure 3

corresponds tOwhere ~ is the highest existing value of 19,hence

the value of the coordinates for which ~ is to be camputed. It
results in

[

m

~<2q+7 d~
T

--

.

8

.
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A more accurate execution of the integrals afforals
result.

8. The connection of the two developments and
of the integration constants (a, 7, and ~ - g) is
separate the integration constant a,

15

a more accurate

the determinantion
as follows: To

is introduced in the power development (3), which results in

!i2J. #“ .~(_ ~)n cn ~3n
n=() (3n)!

The displacement of q relative to ~ is expressed by introducing
the integration constant f3

3
r a-q =x-p
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frcm the asymptotic approximation (4) and (~). A graph is made for Z
and its differential quotients from which the following values are
quoted:

x= o 0.8 1.0 1.2 ~.4 1.9 2.() 2.03 2.1

z. o 0.317 0.492 0.701 0.938 1.63 1.79 1.8561 1.94

&z—=
ax

o .784 .961 1.121 1.257 1.50 1.53 1.5479 1.56

~= ~
.639 ● 34 .28 .2582=2 .23

The terms of the power series are cm.qy.ztedup to CP23—; ftiher terms
23!

are extrapolated, in part, from the difference serie~ of the logarithms
of the coefficients. The location of the asymptotes is already quite
apparent in figure 4.

.
4.

u

.

—

—

9

.
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1.87 -b

.%lgt

1.0

1.0 2.0

Figure 4

Since owing to g = 2q asymptotic, Z = -(X . ~), rough approximation
~2/3

values can already be read for a and ~: a . 1.30, ~ . 0.96,
with X = 2.05 as connecting coordinate for ~ = 1.00. The corresptii~

~2z
values of — and ~’1 give for 7: 7 = 0.g2. The calculation iS

~2

more rigorous when a, 7, and the connecting coordinate related
to q = 1 are varied by minor corrections and these then computed
from linear equations. T,ojudge the accuracy, it is stated that our
calculation for X = 2.05 gave

z = 1.8561, az d2z—= 1.5479, ~ = 0.2582,
dzz

aT —,=-0.479
u-n.

where the fourth dechal

for q = 1 gives (using
.

.

fix= dx~

is no longer certain. Asymptotic

Markoffls
J

‘e–tPat)

t

approximateon
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.

{}
c = 2 + 0.04454”7 + :“;;:~ 72

.

C1=2
{}

0.00076 72
-0.13940’7– ~ooo423

Kn
{}

0.00462
= 0.36788” 7 + o ol~p 72.

the top numerals in the
{}

stemming frcm ~2, the bottcm numerals from

the upper limit defined in (7). (The latter is, as stated before,
rather rough.) The “temporary assumption” about the upper limit of ~
gives: c <2 +0.0g2 7. The upper lbdts are therefore guaranteed
(reference 7). Hence, the result

a = 1.3266, x = 2.0494, 7 = 0.9227, (B = 0.9508)

It canbe safel.yassumed that a ranges between 1.326 and 1.327.

9. Rmn it, it canbe computed, for example, what drag a ykte of
width b and length Z is subjected to when dipped parallel to
flow lines into a flow moving at velocity Il. The drag per unit
surface is

the
of

Integration over the @ate gives

hence, when the water flows at both sides of the plate

—
—

w

#-

—

—

—
_’

—

drag ‘r= 1.327. % kpZii3
.



NACA TM u56

II. CAICUIATION OT REGION OF SEPARATION BEHIND

A BODY DIPPED INTO A UN~ORM FIQW

1. The following problem is treated: In an otherwise parallel
flow, a cylindrical body is hmnersed symmetrically to the direction
of flow. The %oundary-layer coordinates are ccmputed frcm the ~oint
of division of the flow. The quantity fi is eqanded as function
of x in a power series. For the integration of the fundamental
equations

au+av=o
ax &

the formula

is used, with due regards to the s-trical conditions for the
stream function W; u and v are obtained then by differentiation.

19
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,

.s

rT------------
L.

Figure 5
—

Consistent with the general boundary conditions, the functions 1(Y)
must then satisfy the boundary conditions

X21 = ()

‘2=0 fory=O

—

—

—

—

.

hence

x
2
= qzy + rl

.3?Z is the ccmstan~ of integration. Frcm insertion in the first
fundamental equation, the differential equations for X are obtained

—

ae:

&(2x+wyx.J -.-
XJ$.J’ ) = &

A=(J

which for Z = O is

to he defined. This
solved by expanding

A=o

quadratic, for Z > 0

equation can, like the

linear in the ‘z functIon

preceding yroblem, be
Y = O in powers, for = ~ approximateing

as~tatically ani-joining both: Su%8equent~, it is shown that the
asymptotic approximateion can be emitted, since the power series already
identifies the asymptote and therefore the integration constant with .
sufficient accuracy. The calculation is restricted to X. and Xl,

.
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that is, the first and third powers of x.
spondimg coefficients q. and ql in ii

increasing, then decreasing velocity - the
separation occurs, is characterized by go

21

Because, since the corre-
atieady indicate a first

case, in which presumably
>09q1<0-thetyye

of pressure distribution required in t$e introduction (3) is already
supplied by the first two powers; hence, it is to be expected
that ~ and xl, even though not quantitatively exact, already

represent the effect of the separation. In one of the problms
treated in similar manner later on the nefi approximation was also
ccqut ed; and it substantiated the admissibilityy of the limitation
to the first two powers of x.

2. The equations for ~ and Xl are

%’2- w-o” =
.

Xo’Et - Xoxl” + 3(X1’XO’ -
.

The mnner of entry of qo, ql, k~ ~

sim.ilarity. Here also, the first two
significance in sane

ii

& + ;%m

Xlxo” ) = kqoql + :xl’”

cm be established by mectic~

terms indicate universal
ms~ects. Hence, writing

= qox * Cllxs w=‘ox ‘ xlx3
and intrmlucing the fol.lowlngquantities

e=~. 7=~Y co=&o {I= ~x.

F

.

4’
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Lo and cl satisfy, as functions of q, the differential equations

CO’2- Cohn = 4 + co”

—

is entered.

InsertIon in the differential equation gives:

o

2

—
—

Boundary conditions
.

bz arbitrarily ==1, sinoe a already is integration constant.

G4P3 = -4; eince, in the formuh of the integration constant a,

no allowance was made for the hanogeneity of the equaticm for ~o,

m appears again in this equation.

b4 = O; the curvature of the velocity profile does not change,
at first, sinoe the friction in its effect is two terms ahead of the

—

.

—.

.
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inertia; starting frcm m =-5, it is

23

.

The coefficients of these recurrence formulas can, like alJ nmibers
ccmbined this way fran btiamial coefficients, be computed fram a
diagram similar to Pascalts triangle, whose stert is the folhwing:

v
m oA /P/3 /4/5 /6/

2
1/

dok d

5 z-~-lzl Xlz Z
6 /-1/4 /0 /2 x 1/
7 /-1/3 /s/2 /3 Xl /

8 /-1.~ /-5/015 /4 xl /

and in which each term is the sum of those above it. only the
fmmed-in portion, consistent with the foregoing limits of sums,
is counted.

The first 13 coefficients are

b2.1
b3 =-3

bh=O

b5
=1 %6 = 2b3 =2b2

b7 3

b8 = -1 = ~b3
2

b9
blo = -16b3

.

bU =27- 16b33 bn = 181b3 %3 = 840b32

4. Besides a, two more integmtion constants due to the
asymptotic approximation are involved, which, as in the preceding
problem, should join the ccmputed power series. For the present
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.

Pvo~e~ (calcu~tion of petit of separation), it is, however,
sufficient to know a, and, as stated before, it will be seen that a
can already be camputed with sufficient accuracy ty means of the
power series.

Put Z. = $~, H . cq and plot & as function of H from

dzo
the power series.

%E-
itse~ is still dependent on b3 = -~ and

a4

dzo 2
shall, for the correct value of a, apyroach the asymptote —= —,

dH ~2 ‘
For other values of a, it approaches no asymptote at aJJ.,as a result
of whichas fig. 6 shows, the method for defining a is very
sensitive. The value a = 1.515 is obtained; the last cipher is no
longer certain.

eZ.
—
dn
1.0

0.87

0.5

I

~. The calculation of Cl by
boundary conditions is effected in

—

w
1.0 2.0 \ H

—

.-
—

\

Figure 6

the above linear equation and the

similar manner: power formula

—
—

.-.

.

.
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.

C2 = 1, since 8 already ,iS integration COnStantj 8C~ = -16;

+ C4 = Oj and for m > 7:

Here also the coefficients in
frm a diagm.m whose first line (m
+k, -3, while the others follow by

these formulas can be ccmputed
= 3) consists of the numbers –1,
addition:

The first coefficients are

C2 = 13 ~c, = -163 C4 = 0; C5 = ~3; c6 = &Z3C3 – 8;

c1’ = -32c3; C8 = 17a6; C9 = 3oa6c3 – 224J;

CIO
. _57~3c3 - 25G; CU . 2048c3 + 29~9;

c~ = 783a9c3 - ~g2a6; cl, . _173g2a6c3 + 5964~3;

W
c14 = 221952a3c3 -31> - 136192;

C15
= -~@kLwC - 1024000c3

3

C16 =
17416&9c - 22129a6.

3

- ywag;

.

6. The asymptotic apprach is again disregarded. the integratim
~~~ -t have thO

constant 5 being defined by the coniiition that

asymptote ~lf = 2. Figure 7 shows the terms of the pcmer series

.
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for ~lt, those free from C3 and those multi~lied by c?, as .

curves A and B, that is -

after which ~11 is ylotted for different

6.0

5.0 1

B

values of 5.

/

Figure 7

—

.—

.

—
..;

—
.-

This cwe indicates that the convergence of the series is rather poor
in spite of the great number of comp.ztedcoefficients c, even
at q = 1.6. In any event, the terms indicate, when identical powers
of a are cambined, a satisfactory variation so that the series are
still practicable. The correct value of 8 ranges between 8.20
and 8.3o. The curve rises, at first, very quickly and approaches
its asymptote frcm above. This marked influence on u near q = O
campared to ~ =m permits u in the case of separatism to change
signs at the boundary before it does on the outside.

7. Proceeding to the calculation of the point of separation, it
will be raembered frcfrn(1) that, quantitatively, the results are not
exact, since only the first and third powers of x were taken into .

consideration. The point of separation [~ is defined by

.



NACA TM 1256

●

27

. rP+{O:[E] *C; w)0=$=81011
for T)=o

or by (3) SJId(5)

By (4) and (6), respectively, CL = 1.515, 5 = 8.25. Thus, in the case
of the lower prefix, the only one of interest, the coordinate of the
point of separatia is

~] = 0.65

hence

with

E= qox – qlxs

The maxhum of the velocity (minimum pressure) lies therefore at

while zero velocity in the outside flow would.not be reached

r

9.0
till x=l” Accordingly, the point of sepamtion is 12 percent

~“
of the total bo~ry-layer length behind the pressure maximum. The
obtained figues are Independent of friction constant, densitys and a

—

proportional increase of all velocities.

Accordinq to Prandtl~s diagrsm (section 3 of Introduction) the stream
line V = O diverges frcm the boundary at a certain angle, which is
ccmputed as folJows: In the vicinity of the point of separation, the “-

.—

development of the expression for Y given in (2) reads
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●

vkqo2w=
q +( (co’”

V = O gives for the

~] - gl~~’~]s)?ls+ 3(CO” -3! “ B]% - [E])?’12)
1

divergent stream line

35p]2-a3

*=3
= 11.5 ,

16[E]3-4[~

or in the not-reduced coordinates

These formuks are characterized by considerable uncertainty lecause
only two terms of the development of V were ccanputedand the hiflher
differential quotients, which represent more subtle processes, are
always less accurately camputed than the former.

III.

OF

FORMATION OF TEE BOUNDARY LNIIR AND OF THE ZONE

SEPARATION AT SUDDEN START OF MOTION FROM IUMT

1. The two preceding problems treated stationary flows. The
problem of the growth of the boundary layer is now treated. Assume
that a cylinder of arlitrary cross section is suddenly set in motion
in a fluid at rest and fram t = O is permanently maintained at
constant velocity. At first, the state of potential flow is reached
under the single aotion of the pressure distribution. The thicbess
of the boundary layer is zero to begin with, so far as the sudden
velocity distribution can be obtained at all. The boundary layer
develops in the first place under the effeot of friction, then
through the convective terms. The result is that, after a certain
time, the separation starts at the rear of the body and, frcm there,
progresses gradually. Since the fundamental equations refer only to
thin boundary layers, they, naturally, represent only the start of the
separation process, just as the previous problems dealt with the boundary
layer gnly as far as the zone of separation.

.

.

.“

.
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2. The equations involved here are

au au -ail a2u
~+u%+%at ‘“z+~~

K substitutes for ~.

The potential flow which is set up first gives the boundary
value ii as function of x. Since the urocess for t . 0 is sier,
the type of development is, for the ttme-be~~, stiJJ
must le established by successive approximation. The
on the changes has (at smalJ t) the friction, hence,
approximation U.

au. S%.

F’Kp
The integral of this equation

Unlmown; it - -
principal influence
for the first

satisfies the conditions of supplying a vanishing boundary layer
for t = O and of joining the outside flow U. =fi for y = m. The
subsequent approximation is obtained by inserting u. in the
convective terms, while t- and friction terms obtain u = U. + U1.

The resultant equation for U1 reads
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,

According to mechanical similarity, this equation is satisfied by the
fOrmula <

—

‘1 = tii$j f(~) .-

which is abo not contradictory to the boundary condition U1 . 0
—

for y =0 and y=m.

After further considez% ions, which in particular refer to the
insertion of x, the quantity u is represented in an expansion in
powers of t, the coefficients of which are functions of ~, that is,
still contain t. These functions are also still dependent on x,
but this tjme x enters the differential equ,atio~ only as parameter.

3. The formula for ~ is accordingly

and hence the differential equations for X

—

—

As before, the calculation is lfmited to the
that is

first two terms,

—

X. = ii@) xl = V=p#l(ll)

.
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u= Cco’ + tiia ‘
& 1

The equations for co and El read then

co” + 2?&’ = o

Boundav conditicms

forq=o: go=o co’ = o

4. The solutions of the above clifferential equations, which are
to be used in the subsequent problem, are obtained by quadrature when
the homogeneous equations are integmated. The latter integl’alswere
obtained by the following consideration: The homogeneous parts of
the equations stem frcnnthe thne and friction term which together
form the heat conduction ,equation

Of this equation integrah of the form



.
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exist, according to shilarity considerations,whereby fn satisfies

the differential equation

fn” + 2qfn’ - 4nfn = o

which the above form possesses.

Thus, for exeqle (see above)

For~=O

Uo =Owhent<O

For ~ = O, henoe, for y = o, ~ is proportional to tn, hence must

be representable by superposition of solutiom u. in the fOllOwing
form

~=n J“.0(2$-+’-) w-’%

J(
t

=n U. ~ .to&ldto

o +—’ )2 (t-to)

sinoe for y

For the

=0 itia .

i

t
=n to%to = tn

o

evaluation of this integral,

,

‘

put t-to=T

n-1
T) dT

.

.

-.

.

.
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insert herein

and finally obtain

.

calculation
previously cited

of this integral by the binmial theorem and the
methcxlof partial integration finally gives

fn =~~iq2V/’e-T2dq
p=oz~-1”’”” m

{

un
+ S 5(-1)”+’ 2’- ~

&le-.~’2

v=1 p=’ (2Y - 1)..o(2~–2’ +1)

d
The other integral

J

11
of e~2d~

m

is algebraic amd equal to the above factor

5“ @ntity Lo is determined as follows: With the boundary

conditions taken into consideration

.
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.

.

whence by integration

while “utilizing

The second differential equation (of the secofi order for ~1 t)

fOrm

4

The integral of the homogeneous equation for Cl’ is by (4)

The integral of the nonhomogeneous equation would then be
olkainable by quadrature. But it is also true that, by twice

differentiating, the differential equation finally l)ecc&s

.

.

.
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.

.

which is easier to inte~te as an eq.wtim of essentiau first
order. %nce

35

cl

Since the ~pressed force
of the differential eq~ti~ c~tatis ‘-q’

e~a

in each tem after twice differentiat~,
cancel-souts and ~’”

and then ~ can be inte~ted, because
the functims behtid the

+12
intepls contiti~ at ‘b ‘St’ e

twice, and ~ addition, powers

of q, and must be integmted several t~s, which can be acc~

plished by the m.eth- disc~sed previm~ (S,6). T@ restit of
the rather vol~ous oalc@t ion reads

The r-sin that the eqwtim here
could be inte@ted in closed

for% despite its aff~ty with the previousw statimry prohl@Q, is
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due to the fact that ~ is simpler than u*, although both have,
ULI

according to the order of the
character.”

The detemnination of a
Conditions !1’ =ofor~=

a= o

UA

differential quotient, “heat conduction

and 13 from the lhuiting
O and ~ = m gives

D. A+&.Vy’c ~%312

6. For ccmputing the zone of separation, there is

The condition for the t- of separation [t]

1+(, +;)kl~=

hence, ~ must be negative. The separaticm

is

o

occurs first where g

has the greatest magnitude. The result applies to cylinders of any
cross section; ii is the correspmd.lng potential flow.

IV. DEW?JIIPMENTOF ZONE OF SEPARATION FROM

AT TJNIFORM32YACCELEWWT3D MOTION

KEST

1. Against the physical principles of the foregoing problem, the
objection may be raised that the sudden shock might be accompanied

.

A

. .—

.

—.

.

.

..

—

.
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by an interrupticm of the fluid. Hence, let the solution of the
problem assume that, starting frcm the time t = O, the hrmersed
body is subjected to constant acceleration.

In that case

ii= tw(x)

_laP_=+-=_w+t2*
pax M %%- 3X

2. Frmn considerations s~lar to those made before, the solution
of the differential equation

is based on the formula

Insertion in the

Y
—

2 pt

basic eqmticm gives

a3x2x+1
a2x2A+l

ax
+ 2q 4(2X + l)%

3q3 $2 -
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.

1 ax2p+1
=

q4—
p=o aq

for A = O, the right-hand

a%
2).A3J-1

&ay

ax
2J.4.L-1

ax 1a2x2v+l

af

side contains -kw, for k = 1, Jh@.
dx

The calculation of the state is again limited to the first two
terms, while it should be noted that through those two terms, the two

terms of the pressure aww + t2k are also taken into consideration.
ax

The iqressed force of the next equations contains only earlier
development coefficients. For the final equation, however, which
supplies the zone of separation, the coefficient of the neti term is
ccmputed also. Fpr xl and ~ the ‘relationshipof x can be

introduced in the following man&r:

~ = Wcl(v), X3 = w$#3(ri),“

The differential equati~ for ~ are then:

Boundaw conditions:

for q = O: u= 0’

fra
v = o

frcmlu=tw

—

—

.-
:

.—

--
.

.

—

.—

-—

.

.
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3. According to the general solutions of the

b~l
differential equations discussed ti III (4), —

a7

39

Qresent t~e of

can be written

Ml ~
forthwith, since the nonlmnogeneous term A is dis~osed of by — = ●aq ‘
~, is obtained byintegration by the re~eatedly cited method (16)

-1-

‘These
table

*=*[e-”+’dy’”n]

[

&Tl+~- 1+ (1+~’)efi’
3p

+ (37 +%3) I’d%,]

functions are quantitatively plotted in figure 8 and given in a

(see ~ectiun 6 ftihming).
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.

b

—

.,
0.25 0.5 1.0

Figure 8

The h.upressedforce on the right-hand side
is then

of the second equation

{J }1

2
+ (3 + h~k) 7efi2d~

w

‘ 4. The integration of the second equation, in closed form, again
succeeds by the same methods as in III (5). For the wA” of the

impressed force quadratio in ea2 a formula with indeterminate
coefficients is particularly advisable.

● �

.=
.-

——

.

.
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J’v+ (d~ + e~3 + f~5)e-~2 e–~2d~
w

{J }

v 2
+ (g + hq2 + iq4 + /) e-~2dq

b
w

This formula fails when the impressed force contains terms which exceed

{! }2~6e@ , ~5e–rl*
/

~e–7*dq~e-q2dq,/ ~ (ccmpareIII (5)). The
w

coefficients are determined frcm linear equations. The other

x w
J are easier to cmpute; ~3 and J followbY

‘ofiions ‘f an aq*

integration and differentiatim. So, when the integration constants
are correctly ccmputed, the final result is

.

+$
[
(-q + 2q3)e+2

+

+

+

+

(1516 ——

)[
(16 + 36q2 + 8T4)efi2 r

5 6~ 45~

n
(6oq + 80q3 + 16q5)

J]
e—T2d~

m
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-%[efi2‘2’L’e-”dl

+ (-9+ 18q2 + 12T14+ 876){0’-2d~}~

“*(*-*)i33’+2%3+4’’)e7
f]~’+ (I5 + 90T12 + 60q4 + 8/) efl dq
m

NACA TM I-256 .—

.

—

hence, by integration

C3 =-$[._2 +2~~’’e~2dJ

—
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n
+ (-537 + 198TI2+ 64q4 + 4oq6)ef12

Lr
e~2dq

a.

.

+ (-315?+ 210q3 + 84v5 + 40~7)<

—

(d- A_JiL )1(24 + 87T2 + 40q4 + 4q6)eW2
‘1c)5 6F 45~3

( 128 + 128 9— -—
+ 1575P lo5@X 146 )

These three

the differential
coefficient X.

functions, plotted in figure 9, rigorously satisfy
equations and the boundary conditions for the

5. The condition for the zone of separation has the form

whenoe, by the foregoing formtis

~~1=~ $$

~fi+2

.

.
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The equation for the separation time [~ reads

● NACA TM 1256

() []a1+3LJL t22.0 ,
60 225fl ax

The nefi term in the separation equation
%=0 ‘“”’-d

#x
read.: 1t5 5, and in order tobe able to allow for”:it,too, the,

F
2~t av2

coefficient in this separation equation, rather than the total
variation of Xq, is ccmputed.

/

I .
1.0

0.964

0.5

L

0“138-0.25

The development term X5

Figure 9

satisfied the equation

b

—

.

.

‘v

.—

The entry of x in ~ and x is lmcwn, and calculation of the
3

righkhand side confirms that X
5

assumes the fcmm
--

.

.
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.

*

Since tw cancels out, tbs condition of se~aration reads

the coefficients [1a’cyh’@6. This leaves the calculation of

‘

For ~5, the differential equation reads

and the boundary conditions

The Iqressed force f(q) is given by the

functions.

[1

~[
The desired coefficients 4

an2 ?@

previously written

ere ccquted by

Greents method as follows:
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.

.

Then, If $ is made to satisfy the adjunct differential equation

and the boundary conditions

8(0) = -1 19(m) =0

the result is

f(q) is given previously; the influence coefffcfent $ (Greents
function) is obtained by integration of his differential equation

—

.-

.

.-

The curve of $ is shown in figure 10, along with the
product # ● f. The mea of this last curve gives the desired

.

coefficient.
.
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0.6 -

.

0.26 0.50 1.0
0 T

df

-0.5 -

-1.0

Figure 10

the equations

.

La+ ] ~=o ‘O

ere availab10; ~ . g is plotted in figure 10 according to the values
indicated below.
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The computed values are the following:
—

o

0

0

2.26

0

0

.964

0

-1

0

0

0

0.25

.061

● kyl

1.396

.022

.137

.231

.315

-.327

-.103

.124

-.041

0.50

●211.

● 720

● 799

.060

.150

-.og2

.750

-.1.12

-.084

.240

-.027

1.00

.638

.“943
.

.201

● Uq

.020

-.156

.457

-.018

-.008

-.016

● 0003

The area of the two curves is approximately

1.50

-.

0.035

-.05

m

T- 0.376

1

0

.138

0

0

0

0

0

0

0

7. The equation of separation therefore reads

-.

.

.—

.

.
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.

or

&

1 + 0.427 . ~]2~ -0.026. [t]~~)2 -0.01. [t]4~ = O

Since the newly added correction term is even negative, the existence
of the zero position appeem to be certain.

The position and time of sepraticn is apcording to the earlier
approximation (without the term ccmguted last)

For the case of a cylinder synnetrical to the direction

.
a%

flow, ~ = O at the rear point where the separation starts, the
a#

. newly computed correcticm gives

[1t 22 = 42,08

equivalent to an error of about 10 percent. From this the quality of
the approximation made in the other problems, where only the first
powers were taken, can probably be also appraised.

V. ATPIJ-CATIONOF TEE

TO THE

RESULTS OF TEE SEPARATION PROBLEM

CIRCUTAR cYIJmDER

1. On the circulsr cylinder

~ is called.
R
the perald.el

.

n=2v sin*

the reduced coordinate X; V is the velocity at w~ch

flow fl’bwstoward the right, and the cylinder moves



+

toward the left, respectively. In the steady case, the separation

6

[

!i~
starts according to Part 111 Section 7 at ~epo = 0. 5

q
the %

maximum velocity lies at

where

ii=qox-q1x3

x
Xy

Yy

Y~

Figure JJ. ,

Taking the ordinary development in powers of sine

.-

.-

—

.

.-

x
sepg

= 1059 . R, X =
sep.

~~~”; =x . ~,41 , R; Xmx . 8~0

.
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But approximating the sine in the interval O - n by the method of
J least squsres, gives

~.= ~ .0.856, “

x = 1.97.R, x . ~jo
sep. sep.

x = 1.75 . R, x = 1010
max max

In any case, the point of separation lies, by the present
calculatia, at fra 11 percent to 12 percent of the total boundery-
layer length behind.the maximum of the velocity. This statement makes,

. of course, no claimto accuracy, since @ the first two powers of x
are taken into consideration. Besides, test records of the pressure
dtiference indicate that the state neer the separation is difficult

. to attain by development from starting point of the boundsry layer,
because it is too strongly affected by the ~essure distribution of
the turbulent bodies behind the cylinder. The sole purpose of the
present calculations is to indicate that separation is actually
obtained by the hy&c@namic equations. Further devel~ent of the
calculating methods, especially for the more Wportant probl@m of
solids of revolution prmisesj therefore~ success,

2. E the cylinder with constant velocity is suddenly set in
motion

The time of separation [t] is, according to III (6), givenby

[1t .4.35 R
v Cos x
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The separation starts for X = fi,cos X = -1 at time

to = 0.3+

Up to that, the cylinder has travelled a distance

S= Vto=0.3~. R

All this is independent of velocity, density, and friction coefficient
(little friction assumsd).

3. litconstant acceleration

li= tw(x)

where V is then the acceleration

* 2vt sin $

of the cylinder in the flow. The
separation time is (IV,7) for the start of sepez?ation

[1
t 2~=+.34 or =42.08

ax

respectively, or

t2
c1

Rm .l.17— or =-1.o~! R
v COB x v Cos x

respectively. The distance covered by the cylinder iE

s = L@2
2

at stat of separation (X = n)

s=o.59.R or Soo520R

respecklvely.

.—

—

-“

—

-_

.
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4. The resistance which the cyMnder experiences at constant
accelerati~ is oautputednext. The stress cmpcnents are

Yy==p+2k&

5“’(”+

CMng to the smallness of the friction,

~, leaving as force in dtrection of the outside flowrespect to
&

Yc

K =2. B
t(

p Cos x
o

B is the width of the layer (height

The pressure portion is computed as

)+&tix.R~
%

of immersed psxt of cylinder).

follows;

[

%

~essure = ‘R p ‘Os ‘u =
o

Then

()?P=~-—=p —-+-ii-- iisstw
axabax

‘P(W+’2*)W.msinx
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The second te~ oancels out in the integration; the first gives

%
s8me = 21@R%

hence, an increase in inertia by twice the mnount of displaced fluid.
The friction pO??tiOXlis

where R = k/pe Again, the second term disappears because
$ !~

.5

%2

are msrely constants, leaving
a72

qictfon = 4 J@% . BRV

5. To give a picture of the flow conditions corresponding to

these formulas, the flow curves for a specific state of motion of the

uniformly accelerated cylinder we represented in a diagram. The
parameters R, V, ~ are erbitrary; hence, necessitate the introduction
of reduced.quantities for x, y, t, ~, and U, so t~t R, ~, ~

disappear. It is accmqllshedby

.

.-

..

●

—

.—

.



NACA TM 1256 55

by which the formd.as (ccmpare IV (2) and V(3))

.=t.(i#+.2g$

become the fdlawing reducedequatians

(x$+2T2COSX )ac3
U=2Tsti X.

“~ ‘

The curve ~ is then plotted against Y = 2@ . ~ for a fixed time T
for a number of coord=te values X, and the position of the
values ~ = constant read frcmithese curves. In figure U, the

Cy~Or i9 shown fra x9 fl/2 tox-Yc. The separation time is

given by 2’22cos X = +2.34, that is, the start of the separation
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by T = 1.08. In figure 12 2T2 = 5, hence T = 1.58, ma chosen.
For this chosen time, the separation point has already progressed up
to %eycmd 600 at the cylinder; nevertheless the boundary layer still *

is fairly thin, the relative sizes correspmd to the values R = 10 cm,
o

K = 0.0S (water), V = O.@Q-, that is, to a very snmll acceleration.
sec sec

Accord@Q, t = 15.8 sec.

.-

=

Figure 12
.



NACA TM 1256

.

The picture obtained by the previous reduct@n formulas
&

for V = ~ titer1.* secs is represented in fQure 12. The
sec

thicke~ of tbs boundary layer would be diudtished b the ratio

of 1 :@.

Translated by J. Vanier
Natimal Adviscmy Camnittee
f%r Aermaut ics

57

NACA-Langle~-2-17-50-925


